Mechanisms of heat transfer for axisymmetric bubble impingement and rebound
نویسندگان
چکیده
منابع مشابه
Numerical Study of a Confined Axisymmetric Jet Impingement Heat Transfer with Nanofluids
A numerical simulation on confined impinging circular jet working with a mixture of water and Al2O3 nanoparticles is investigated. The flow is turbulent and a constant heat flux is applied on the heated plate. A two-phase mixture model approach has been adopted. Different nozzle-to-plate distance, nanoparticle volume concentrations and Reynolds number have been considered to study the thermal p...
متن کاملNanofluid impingement jet heat transfer
Experimental investigation to study the heat transfer between a vertical round alumina-water nanofluid jet and a horizontal circular round surface is carried out. Different jet flow rates, jet nozzle diameters, various circular disk diameters and three nanoparticles concentrations (0, 6.6 and 10%, respectively) are used. The experimental results indicate that using nanofluid as a heat transfer ...
متن کاملExperimental Study of Heat Transfer Rate in a Shell and Tube Heat Exchanger with Air Bubble Injection (TECHNICAL NOTE)
Shell and tube heat exchangers are widely being used in many of industrial and power engineering applications. Different techniques have been employed in order to enhance the performance of the heat exchanger. Air bubble injection is one method to increase the turbulence of the flowing fluids which in turn enhance the heat transfer performance. Injecting air bubbles is one of the promising tech...
متن کاملCollapse and Rebound of a Gas Bubble
In this paper, we study the collapse and rebound of a gas bubble. Our goals are twofold: (1) we want to stress that different mathematical models may lead to extremely different results and (2) we introduce a new class of simplified reliable models. We accomplish our first goal by showing that the results obtained from two of the simplest and most widely used models (the isothermal and adiabati...
متن کاملHeat transfer enhancement due to air bubble injection into a horizontal double pipe heat exchanger
If an air flow is injected into a liquid fluid, many ambulant air bubbles are formed inside the fluid. Air bubbles move inside the liquid fluid because of the buoyancy force, and the mobility of these air bubbles makes sizable commixture and turbulence inside the fluid. This mechanism was employed to enhance the heat transfer rate of a horizontal double pipe heat exchanger in this paper. Howeve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Heat and Mass Transfer
سال: 2017
ISSN: 0947-7411,1432-1181
DOI: 10.1007/s00231-017-2137-x